

MODBUS Protocol

User's Manual

Revision: 050714

SELCO A/S Betonvej 10 - DK-4000 Roskilde Denmark Phone: 45 7026 1122 - Fax: 45 7026 2522 e-mail: selco.dk@selco.com www.selco.com

Table of Contents

1	PRE	FACE	4
2	PHY	SICAL INTERFACE	5
	2.1	RS485 CONFIGURATION	5
3	MO	DBUS PROTOCOL	6
	3.1	Addresses	7
4	MO	DBUS FRAMES	8
	4.1	Syntax	8
	4.2	Error Codes	8
	4.3	FUNCTIONS	8
	4.4	EXCEPTION STATUS	9
	4.5	LED STATES	10
	4.6	VIRINP STATES	10
	4.7	ALARM CONTROL	10
	4.8	5-LED Addressing	12
	4.9	ANALOG READINGS	12
5	EXA	MPLES	13
	5.1	READ BIT (FUNCTION 01H OR 02H)	13
	5.1.1	Read the state of the siren relay on unit 1 (which is inactive)	13
	5.2	READ WORDS (FUNCTION 03H OR 04H)	13
	5.2.1	Read the state of LED 8 on unit 1 (which is flashing)	14
	5.3	WRITE A BIT (FUNCTION 05H)	14
	5.3.1	Do a LED test on unit 1	14
	5.4	WRITE A WORD (FUNCTION 06H)	15
	5.4.1	Write short flash (cable failure) to all LEDs on unit 1	15
	5.4.2	2 Set LED 14 (0Eh) on unit 1 to quick flash	15
	5.5	READ EXCEPTION STATUS (FUNCTION 07H)	16
	5.5.1	Check if unit 1 responds (check communication to unit 1 of type 01)	16
	5.6	WRITE N WORDS (FUNCTION 10H)	16
	5.6.1	Set all 24 LEDs (and the siren relay) to a mixed pattern	17

б	MO	DBUS MEMORY MAPS	19
	6.1	M1000 Alarm Annunciator	19
	6.2	M2000 Engine Controller	20
	6.3	M3000 Alarm Annunciator	21
	6.4	M4700-80 Indicator Panel	24
	6.5	H1500 Indicator Panel	26
	6.6	H3000 Analog Alarm Annunciator	27
	6.7	H3010 SMOKE ALARM ANNUNCIATOR	29

1 Preface

This document describes the features and functions of the RS485 based serial communication interface of the SELCO M1000C Alarm Annunciator (new edition), the SELCO M2000C Engine Controller (new edition), the SELCO M3000 Analog Alarm Annunciator (new edition), the SELCO M4700-80 Indicator Panel, the SELCO H1500 Indicator Panel and the SELCO H3000 Analog Alarm Annunciator.

The serial communication interface is RS485 and the communication protocol is MODBUS RTU.

2 Physical Interface

The physical interface consists of a two wire half-duplex RS485 interface. The connection terminals of the RS485 interface plug are marked "A" and "B". Terminal "A" is positive, while terminal "B" is negative.

RS485 works with a single master (e.g. a PLC or a PC). The master controls all communication on the bus. The SELCO units operate as slaves and will simply respond to commands issued by the master.

The two-wire RS485 bus is working in half-duplex mode. As half duplex does not allow simultaneous transmission and reception, it's required that the master control direction of the data flow.

It is also possible to use a master with a full duplex RS485 interface; however it is necessary to connect the two positive and negative signals together. Thus Tx+ and Rx+ become "A", while Tx- and Rx- becomes "B".

2.1 RS485 Configuration

In order for the communication to work between the master and slave units, the communication setting must be adjusted to match.

The following communication settings are applicable.

Baud Rate	Parity	Data Bits	Stop Bits
1200	None	7	1
2400		8	2
4800			
9600			
19200			

Upon delivery the SELCO units are configured as follows:

9600 Baud, None parity, 8 data bits and 1 stop bits.

3 MODBUS Protocol

The communication protocol used on the RS485 bus is MODBUS RTU. Modicon originally defined the MODBUS protocol.

MODBUS RTU is a simple bit based protocol. A MODBUS system consists of a single master, which in turn interrogates each slave connected to the bus. All SELCO units operate as slaves on the MODBUS. The master unit is typically the SELCO H0300 Logger, a PLC or PC equipped with an RS485 Interface card.

A MODBUS message (a MODBUS frame) consists of the following elements.

Element	Meaning
Start (SOM)	Signals the start of a new message. A silent period
Address	Address of the recipient (slave address)
Function	Function (e.g. Read bit/word)
Data (n bytes)	Data used for the particular function
CRC Check	Checksum (used for validation)
End (EOM)	Signals the end of a message. A silent period

The MODBUS protocol can be used in two different modes - ASCII and RTU. ASCII stands for *American Standard Code of Information Interchange*. RTU stands for *Remote Terminal Mode*.

MODBUS ASCII is a clear text protocol, which means that frames are made up from a string of ASCII characters which can be transmitted directly from a standard terminal (e.g. Windows HyperTerminal). The advantage of ASCII mode is that messages are easy to generate, the disadvantage is that the frames are relatively large and inefficient.

In RTU mode every element is represented by 8 bits - except Data, which can consist of a variable number of successive bytes). RTU mode provides far better efficiency compared to ASCII, as frames are shorter and thus requires fewer bits. The drawback is that data cannot easily be entered from a standard terminal. RTU mode also requires that the elements be provided in a continuous and steady flow. SELCO unit works only in the bit based RTU mode.

Start (SOM)	Address	Function	Data	CRC Check	End (EOM)
>= 3.5 bytes of "Silence"	00000001	00011111	XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX XXXXXX	???????? ????????	>= 3.5 bytes of "Silence"

Notice that the above message is started and ended by 3.5 bytes of silence. The silent period enables the master or slave to identify the start and end of a frame.

The Address and Function elements each consist of 8 bits (1 byte). The Data element is typically made up from a variable number of bytes, depending on the Function of the frame. The CRC element consists of two bytes (16 bits) and it is used to validate the contents of the frame.

3.1 Addresses

With MODBUS every slave must have an address (a number). The master uses the address to target a specific slave from interrogation. SELCO units can be addressed from 1 to 64 (01h - 40h).

Address 0 (00h) is used for broadcast frames (e.g. LED test on all connected units). Broadcast messages targets all slaves on the MODBUS simultaneously. Broadcast frames works without reply, as a reply from multiple units would cause collision on the bus.

4 MODBUS Frames

4.1 Syntax

Below is an example of the MODBUS frame syntax. Please note that the Data element can consist of a variable number of bytes, while the length of the Address, Function and CRC elements are fixed to one or two bytes.

Address	Function	Data	CRC
1 Byte	1 Byte	n Bytes	2 Bytes

4.2 Error Codes

Value	Decryption
01h	Unknown Function
02h	Unknown Address

Error codes are only returned if the CRC is correct. The SELCO units will only report errors under the conditions described above.

An error code response frame will have the following syntax.

Response:

Address	Function	Data	CRC
Panel	Recognised Function + 128	Error Code Value	CRC16

4.3 Functions

Value	Description
01h and 02h	Read a Bit
03h and 04h	Read words
05h	Write a Bit
06h	Write a Word
07h	Speed read 8 Bits
10h	Write n Words

It is possible to read and write the contents of any address in the MODBUS Memory Map, provided that the operation is allowed (e.g. the contents of the address is not write protected).

4.4 Exception Status

The Speed read 8 bits function can be used to read the unit exception status.

The unit exception status provides information on the unit type plus a single bit that show whether or not new events have been detected since then last request for exception status. A logging master can use this feature to determine whether or not it is necessary to read the unit indications/alarms.

Reading the exception status will reset the new events bit.

Request:

Address	Function	CRC
01h	07h	41h
		E2h

Reply:

Address	Function	Data	CRC
01h	07h	Unit Status & Type	??h
			??h

Unit Status:

Bit	Meaning
7 (MSB)	1 = New events since last read
	0 = No new events since last read
6	1 = No logging of new events
	0 = Logging of new events
5	Not used (for future use)
4 - 0	Unit type:
	00000 = H0300 (when used as a Slave)
	00001 = M1000
	00010 = M2000
	00100 = M3000
	00101 = H3000/H3010
	01000 = M4700-80
	01001 = H1500

4.5 LED States

Three bits describe the state of a LED.

LED State	Bit Code
Off	000
Steady Light	001
Short Flash (Cable Failure)	010
Quick Flash	011
Flash	100

Writing the state of a LED directly through the MODBUS will always overwrite the LED indication of a contact input (a physical alarm). The MODBUS controlled LED state will remain until it is again changed with another MODBUS message. The indication of the related contact input will not show unless the LED is turned off through the MODBUS.

LED states can be read and written on the SELCO M4700-80 Indicator Panel. On the remaining SELCO units it is only possible to read the state of the LEDs.

Please note that the M3000 and H3000 presents the individual alarms as opposed to the specific LEDs. On the M3000 and H3000 alarm states are described similar to LED states, despite that an alarm may not be allocated to a LED.

4.6 VIRINP States

Three bits are describes the status of a virtual input (VIRINP). The virtual inputs exist only in software; however a virtual input works as a contact connected in parallel to the sensor present at the physical input. An OR relation exist among the physical input and its virtual counterpart, however the state of a virtual input is solely determined though a controlling frame transmitted on the MODBUS.

VIRINP State	Bit Code
Deactivated	000
Activated	001

It is possible to control virtual inputs on both the SELCO M1000 and the SELCO M4700-80. Other SELCO units do not support virtual inputs.

4.7 Alarm Control

For security reasons it is not possible to write the state of a LED or alarm on an alarm annunciator, thus the LED or alarm state is read only.

It is however possible to write to the address of a given alarm. The write operation will not alter the state of the alarm but it will alter its function and/or operation (e.g. reset or block on/off).

The following write operations are valid on the SELCO MODBUS capable alarm annunciators:

Address	Function	Data	CRC
Panel	06h	Alarm address	CRC16
		Alarm function	

Example: send alarm function 0Ah to alarm 3 of unit 5.

Address	Function	Data	CRC
05h	06h	00h 03h	CRC16
		00h 0Ah	

The following alarm functions are valid:

Alarm function	Value
Reset Alarm	0Ah
Block Alarm	0Bh
Unblock Alarm	0Ch

Please note that alarms and LEDs are directly related on the M1000, while they are separated on the M3000 and H3000. Alarm functions are addressed through the LEDs on the M1000, while the alarms are addressed directly on the M3000. The writable alarms are marked by a (*) on the memory map of the unit.

4.8 5-LED Addressing

A total of 24 LEDs can be addressed through a single MODBUS message by reading and writing to address 19h - 1Dh.

Address	LEDs
19h	1, 2, 3, 4 and 5
1Ah	6, 7, 8, 9 and 10
1Bh	11, 12, 13, 14 and 15
1Ch	16, 17, 18, 19 and 20
1Dh	21, 22, 23 and 24

Each address consists of 16 bits (a Word). The final value of each address is calculated from the sum of the binary value of the address contents (the sum of the bit values). Please notice that the most significant bit (MSB) is not used (must be set to zero).

The value of each bit is described in the table below.

		Word (16 bits)														
		Byte (8 bits)										Byte ((8 bits)			
LED	NA		N+4			n+3			n+2			n+1			n	
Word	0	16384	8192	4096	2048	1024	512	256	128	64	32	16	8	4	2	1
Byte	0	64	32	16	8	4	2	1	128	64	32	16	8	4	2	1
Example	0	1	0	0	1	0	0	0	1	1	0	1	0	0	0	1

The above 16 bits can be used to set the state of 5 LEDs. Transmitting five successive words in a row will set a total of 24 LEDs.

4.9 Analog Readings

Analog Readings are requested and read using the read word functions (03h and 04h).

The slave device will supply the analog value as an unsigned and non-scaled word value. The master device is required to scale and sign (+/-) the word value so that it fits the required range.

5 Examples

5.1 Read Bit (Function 01h or 02h)

Request:

Address	Function	Data	CRC
Unit	Read Bits	Address of first bit	CRC16
		Number of bits to read	

Reply:

Address	Function	Data	CRC
Unit	Read	Number of Bytes Read	CRC16
	Bits	(always 1)	
		Byte with returned bits	

5.1.1 Read the state of the siren relay on unit 1 (which is inactive)

Request:

Address	Function	Data	CRC
01h	01h	00h 40h	FCh
		00h 01h	1Eh

Reply:

Address	Function	Data	CRC
01h	01h	01h	51h
		00h	88h

5.2 Read Words (Function 03h or 04h)

Request:

Address	Function	Data	CRC
Unit	Read	Address of first word	CRC16
	Words	Number of words to read	

Address	Function	Data	CRC
Unit	Read words	Number of bytes read Value of word 1 Value of word n	CRC16

5.2.1 Read the state of LED 8 on unit 1 (which is flashing)

Request:

Address	Function	Data	CRC
01h	03h	00h 08h	05h
		00h 01h	C8h

Reply:

Address	Function	Data	CRC
01h	03h	02h	39h
		00h 02h	85h

5.3 Write a Bit (Function 05h)

Request:

Address	Function	Data	CRC
Unit	Write Bit	Address of the bit	CRC16
		New value of the bit	

The address of a bit is expressed by two bytes. The state of the bit is returned in the most significant of the two following bytes (Bit on = FFh, Bit off = 00h).

Reply:

Address	Function	Data	CRC
Unit	Write Bit	Address of the bit	CRC16
		New value of the bit	

5.3.1 Do a LED test on unit 1

Request:

Address	Function	Data	CRC
01h	05h	00h 42h	2Ch
		FFh 00h	2Eh

Address	Function	Data	CRC
01h	05h	00h 42h	2Ch
		FFh 00h	2Eh

5.4 Write a Word (Function 06h)

Request:

Address	Function	Data	CRC
Unit	Write	Address of the word	CRC16
	Word	New value of the word	

Reply:

Address	Function	Data	CRC
Unit	Write	Address of the word	CRC16
	Word	New value of the word	

5.4.1 Write short flash (cable failure) to all LEDs on unit 1

Request:

Address	Function	Data	CRC
01h	06h	00h 00h	08h
		00h 02h	0Bh

Reply:

Address	Function	Data	CRC
01h	06h	00h 00h	08h
		00h 02h	0Bh

5.4.2 Set LED 14 (0Eh) on unit 1 to quick flash

Request:

Address	Function	Data	CRC
01h	06h	00h 0Eh	A8h
		00h 03h	08h

Address	Function	Data	CRC
01h	06h	00h 0Eh	A8h
		00h 03h	08h

5.5 Read Exception Status (Function 07h)

Request:

Address	Function	CRC
Unit	Speed	CRC16
	read 8	
	bits	

Reply:

Address	Function	Data	CRC
Unit	Read	Unit Status	CRC16
	Exception		
	Status		

5.5.1 Check if unit 1 responds (check communication to unit 1 of type 01)

Request:

Address	Function	CRC
01h	07h	41h
		E2h

Reply:

Address	Function	Data	CRC
01h	07h	01h	E3h
			F0h

5.6 Write n Words (Function 10h)

Request:

Address	Function	Data	CRC
Unit	Write n words	Address of the first word Number of words	CRC16
		Number of bytes	
		New value of word 1	
		 New value of word n	

Address	Function	Data	CRC
Unit	Write n	Address of first word	CRC16
	words	Number of words	

5.6.1 Set all 24 LEDs (and the siren relay) to a mixed pattern

This is the desired result:

LED State	LEDs
Off	1, 4, 6, 10, 20 and 22
Steady Light	2, 5, 9, 15 and 23
Short Flash (Cable failure)	3, 7, 8, 14 and 21
Quick Flash	11, 13, 16 and 18
Flash	12, 17, 19 and 24

And the siren relay shall be deactivated.

The value of each address can be calculated as follows (MSB is not used).

Address 19h

19h	X	LED number						Address value		
LED		5 4 3 2 1				1		Binary	Hex (byte)	Hex (word)
State	0	001	000	010	001	000	=	00010000 10001000	10h 88h	1088h

Address 1Ah

1Ah	Х	LED number						Address value		
LED		10	9	8	7	6		Binary	Hex (byte)	Hex (word)
State	0	000	001	010	010	000	=	00000010 10010000	02h 90h	0290h

Address 1Bh

1Bh	Х	LED number						Address value		
LED		15	14	13	12	11		Binary	Hex (byte)	Hex (word)
State	0	001	010	011	100	011	=	00010100 11100011	14h E3h	14E3h

Address 1Ch

1Ch	Х	LED number						Address value		
LED		20	19	18	17	16		Binary	Hex (byte)	Hex (word)
State	0	000	100	011	100	011	=	00001000 11100011	08h E3h	08E3h

Address 1Dh

1Dh	Х	LED number				Address value				
LED		Rely	24	23	22	21		Binary	Hex (byte)	Hex (word)
Status	0	001	100	001	000	010	=	00011000 01000010	18h 42h	1842h

Thus the complete request follows.

Request:

Address	Function	Data	CRC
01h	10h	00h 19h	B0h
		00h 05h	07h
		0Ah	
		10h 88h	
		02h 90h	
		14h E3h	
		08h E3h	
		18h 42h	

Address	Function	Data	CRC
01h	10h	00h 19h	D1h
		00h 05h	CDh

6 MODBUS Memory Maps

6.1 M1000 Alarm Annunciator

I/O	Parameter	Access	Description
Address	Туре	Read/Write	
01h	Word	R/W*	Status of LED 1
02h	Word	R/W*	Status of LED 2
03h	Word	R/W*	Status of LED 3
04h	Word	R/W*	Status of LED 4
05h	Word	R/W*	Status of LED 5
06h	Word	R/W*	Status of LED 6
07h	Word	R/W*	Status of LED 7
08h	Word	R/W*	Status of LED 8
09h	Word	R/W*	Status of LED 9
0Ah	Word	R/W*	Status of LED 10
19h	Word	R	Status of LED 1, 2, 3, 4 & 5
1Ah	Word	R	Status of LED 6, 7, 8, 9 & 10
40h	Bit	R	Siren Relay
			00h = Deactivated
			FFh = Activated
42h	Bit	R/W	LED Test
			FFh = Do LED Test
			Read: Returned value=00h
43h	Bit	R/W	Reset
			FFh = Do Reset
			Read: Returned value=00h
50h	Word	R/W	Dimming
			01h – FFh (1 – 100%)
51h	Bit	R/W	LED Synchronization
			FFh = Synchronize LEDs
			Read: Returned value=00h
82h	Word	R	Slave Address
			01h – 3Fh
Alh	Word	R/W	Status of VIRINP 1
A2h	Word	R/W	Status of VIRINP 2
A3h	Word	R/W	Status of VIRINP 3
A4h	Word	R/W	Status of VIRINP 4
A5h	Word	R/W	Status of VIRINP 5
A6h	Word	R/W	Status of VIRINP 6
A7h	Word	R/W	Status of VIRINP 7
A8h	Word	R/W	Status of VIRINP 8
A9h	Word	R/W	Status of VIRINP 9
AAh	Word	R/W	Status of VIRINP 10
B9h	Word	R/W	Status of VIRINP 1, 2, 3, 4 & 5
BAh	Word	R/W	Status of VIRINP 6, 7, 8, 9 & 10

* It is not possible to write the state of an alarm. However, the write operation can be used to alter the function of the alarm or to command, e.g. a channel specific reset.

6.2 M2000 Engine Controller

I/O	Parameter	Access	Description
Address	Type	Read/Write	Description
01h	Word	R	Status of LED 1
02h	Word	R	Status of LED 1
02h	Word	R	Status of LED 2
04h	Word	R	Status of LED 3
04h	Word	R	Status of LED 5
05h	Word	R	Status of LED 5
00h	Word	R	Status of LED 0
07h	Word	R	Status of LED 7
00h	Word	R	Status of LED 9
0.4h	Word	R	Status of LED 7
UAII	word	K	Status of LED 10
10h	Word	P	Status of LED 1 2 3 4 & 5
1911 1.4.h	Word	D	Status of LED 1, 2, 3, 4 & 3
IAII	word	ĸ	Status of LED 6, 7, 8, 9 & 10
40h	Bit	R	Siren Relay
4011	Dit	IX	00h = Deactivated
			FFh = Activated
42h	Bit	R/W	LED Test
1211	DR	10 11	FFh = Do LED Test
			Read: Returned value=00h
43h	Bit	R/W	Reset
-			FFh = Do Reset
			Read: Returned value=00h
44h	Bit	R/W	Start
			FFh = Start
			Read: Returned value=00h
45h	Bit	R/W	Stop
			FFh = Stop
			Read: Returned value=00h
50h	Word	R/W	Dimming
			01h – FFh (1 – 100%)
82h	Word	R	Slave Address
			01h – 3Fh
Alh	Word	R	Status of OUT 1
A2h	Word	R	Status of OUT 2
A3h	Word	R	Status of OUT 3
A4h	Word	R	Status of OUT 4
A5h	Word	R	Status of OUT 5
A6h	Word	R	Status of OUT 6
A7h	Word	R	Status of OUT 7
A8h	Word	R	Status of OUT 8
A9h	Word	R	Status of OUT 9
AAh	Word	R	Status of OUT 10
B9h	Word	R	Status of OUT 1, 2, 3, 4 & 5
BAh	Word	R	Status of OUT 6, 7, 8, 9 & 10

6.3 M3000 Alarm Annunciator

I/O	Parameter	Access	Description
Address	Туре	Read/Write	F
01b	Word	P/W/*	Status of Alarm 1
0111 02h	Word	D/W/*	Status of Alarm 2
02h	Word	N/W *	Status of Alarm 2
0311	Word	R/W* D/W*	Status of Alarm 4
0411	Word	R/W* D/W*	Status of Alarm 5
0511	Word	R/W* D/W*	Status of Alarm 6
07h	Word	R/W* D/W*	Status of Alarm 7
0711	Word	R/W*	Status of Alarm 8
00h	Word	R/W*	Status of Alarm 0
0911	Word	R/W*	Status of Alarm 10
ORh	Word	R/W*	Status of Alarm 11
0Dll	Word	R/W*	Status of Alarm 12
0Cli	Word	K/W [™]	Status of Alarma 12
OEh	Word	R/W*	Status of Alarm 14
OEh	Word	R/W*	Status of Alarm 14
UFn 10h	Word	R/W*	Status of Alarm 16
1011	Word	R/W* D/W*	Status of Alarm 17
110	Word	R/W*	Status of Alarm 19
12h	Word	R/W*	Status of Alarm 18
13n	Word	R/W*	Status of Alarm 19
14n	Word	R/W*	Status of Alarm 20
150	Word	R/W*	Status of Alarm 21
160	Word	R/W*	Status of Alarm 22
1/1	Word	R/W*	Status of Alarm 24
180	Word	R/W*	Status of Alarm 24
19n	Word	R	Status of Alarm 1, 2, 3, 4 & 5
1An	Word	R	Status of Alarm 6, 7, 8, 9 & 10
IBh	Word	R	Status of Alarm 11, 12, 13, 14 & 15
ICh	Word	R	Status of Alarm 16, 17, 18, 19 & 20
1Dn	Word	R D/W*	Status of Alarm 21, 22, 23 & 24
IEn	Word	R/W*	Status of Alarm 25
1Fn 201	Word	R/W*	Status of Alarm 26
20h	Word	R/W*	Status of Alarm 27
210	Word	R/W*	Status of Alarm 20
22h	Word	R/W*	Status of Alarm 29
23h	Word	R/W*	Status of Alarm 30
24h	Word	R/W*	Status of Alarm 31
25h	Word	R/W*	Status of Alarm 32
26h	Word	R/W*	Status of Alarm 33
2/n 28h	Word	K/W*	Status of Alarm 34
280	word	R/W*	Status of Alarm 55
29h	Word	R/W*	Status of Alarm 36
2An	Word	R/W*	Status of Alarm 37
2Bn	word	R/W*	Status of Alarm 58
2Ch	Word	R/W*	Status of Alarm 39
2Dh	Word	R/W*	Status of Alarm 40
2En	Word	R/W*	Status of Alarm 41
2Fh	Word	R/W*	Status of Alarm 42
30n	word	K/W*	Status OI Alarm 43
31N 201	word	K/W*	Status OF Alarm 44
32h	Word	K/W*	Status of Alarm 45
33h	Word	K/W*	Status of Alarm 46
34h	Word	K/W*	Status of Alarm 47
35h	Word	R/W*	Status of Alarm 48
36h	Word	R	Status of Alarm 25, 26, 27, 28 & 29

I/O	Parameter	Access	Description
Address	Туре	Read/Write	
37h	Word	R	Status of Alarm 30, 31, 32, 33 & 34
38h	Word	R	Status of Alarm 35, 36, 37, 38 & 39
39h	Word	R	Status of Alarm 40, 41, 42, 43 & 44
3Ah	Word	R	Status of Alarm 45, 46, 47 & 48
40h	Bit	R	Siren Output
			00h = Deactivated
			FFh = Activated
42h	Bit	R/W	LED Test
			FFh = Do LED Test
			Read: Returned value = 00h
43h	Bit	R/W	Reset
			FFh = Do Reset
501	XX 7 1	DAV	Read: Returned value = $00h$
50n	word	K/W	Dimming 01b FFb (1 100%)
51h	Bit	R/W	I = P = 100%
5111	DI	IX/ VV	FFh – Synchronize I FDs
			Read: Returned value = $00h$
82h	Word	R	Slave Address
0211			01h - 3Fh
Alh	Word	R	Status of OUT 1
A2h	Word	R	Status of OUT 2
A3h	Word	R	Status of OUT 3
A4h	Word	R	Status of OUT 4
A5h	Word	R	Status of OUT 5
A6h	Word	R	Status of OUT 6
A7h	Word	R	Status of OUT 7
A8h	Word	R	Status of OUT 8
A9h	Word	R	Status of OUT 9
AAh	Word	R	Status of OUT 10
ABh	Word	R	Status of OUT 11
ACh	Word	R	Status of OUT 12
ADh	Word	R	Status of OUT 13
AEh	Word	R	Status of OUT 14
AFh	Word	R	Status of OUT 15
BOU	word	ĸ	Status of OUT 16
B9h	Word	R	Status of OUT 1 2 3 4 & 5
BAh	Word	R	Status of OUT 6, 7, 8, 9 & 10
BBh	Word	R	Status of OUT 11, 12, 13, 14 & 15
BCh	Word	R	Status of OUT 16
D0h	Word	R	Analog Value IN1 **
D1h	Word	R	Analog Value IN2 **
D2h	Word	R	Analog Value IN3 **
D3h	Word	R	Analog Value IN4 **
D4h	Word	R	Analog Value IN5 **
D5h	Word	R	Analog Value IN6 **
D6h	Word	R	Analog Value IN7 **
D'/h	Word	R	Analog Value IN8 **
D8h	Word	R D	Analog Value IN9 **
D9h DA1	Word	K D	Analog Value IN10 **
DAI	Word	K D	Analog Value IN11 **
DBU	Word	K D	Analog Value IN12 **
DCI	Word	K D	Analog Value IN15 *** Apalog Value IN14 **
DEP	Word	R	Analog Value IN15 **
DEh	Word	R R	Analog Value IN15 **
וויוס	woru	IN .	maiog value INTO

I/O	Parameter	Access	Description
Address	Туре	Read/Write	-
E0h	Word	R	Analog Value IN17 **
E1h	Word	R	Analog Value IN18 **
E2h	Word	R	Analog Value IN19 **
E3h	Word	R	Analog Value IN20 **
E3h	Word	R	Analog Value IN20 **
E4h	Word	R	Analog Value IN21 **
E5h	Word	R	Analog Value IN22 **
E6h	Word	R	Analog Value IN23 **
E7h	Word	R	Analog Value IN24 **
90h	Word	R	Status of OUT 1, 2, 3, 4 & 5 ***
91h	Word	R	Status of OUT 6, 7, 8, 9 & 10 ***
92h	Word	R	Status of OUT 11, 12, 13, 14 & 15 ***
93h	Word	R	Status of OUT 16 ***
94h	Word	R	Status of Alarm 1, 2, 3, 4 & 5 ***
95h	Word	R	Status of Alarm 6, 7, 8, 9 & 10 ***
96h	Word	R	Status of Alarm 11, 12, 13, 14 & 15 ***
97h	Word	R	Status of Alarm 16, 17, 18, 19 & 20 ***
98h	Word	R	Status of Alarm 21, 22, 23 & 24 ***
99h	Word	R	Status of Alarm 25, 26, 27, 28 & 29 ***
9Ah	Word	R	Status of Alarm 30, 31, 32, 33 & 34 ***
9Bh	Word	R	Status of Alarm 35, 36, 37, 38 & 39 ***
9Ch	Word	R	Status of Alarm 40, 41, 42, 43 & 44 ***
9Dh	Word	R	Status of Alarm 45, 46, 47 & 48 ***

* It is not possible to write the state of an alarm. However, the write operation can be used to alter the function of the alarm or to command, e.g. a channel specific reset.

** Analog values are read out as words.

20mA corresponds to:	744h (1860 decimal).	Max. is 7FFh (2047 decimal), equal to:	22mA.
10V DC corresponds to:	6AAh (1706 decimal).	Max. is 7FFh (2047 decimal), equal to:	12V DC.
24V DC corresponds to:	5A5h (1445 decimal)	Max. is 7FFh (2047 decimal), equal to:	34V DC.

*** The maximum block you can read out at the time is 12 words. Therefore the packed data is repeated in one block at this position (90h - 9Dh).

With the 12 word read block limit you can now decide to read in one block:

- 1. Read outputs 1-16 and alarms 1-39 12 words.
- 2. Read outputs 6-16 and alarms 1-44 12 words.
- 3. Read outputs 11-16 and alarms 1-48 12 words.

6.4 M4700-80 Indicator Panel

I/O Address	Parameter	Access Read/Write	Description
Address	Type		
01h	Word	K/W	Status of LED 1
02h	Word	K/W	Status of LED 2
03h	Word	K/W	Status of LED 3
04h	Word	R/W	Status of LED 4
05h	Word	R/W	Status of LED 5
06h	Word	R/W	Status of LED 6
07h	Word	R/W	Status of LED 7
08h	Word	R/W	Status of LED 8
09h	Word	R/W	Status of LED 9
0Ah	Word	R/W	Status of LED 10
OBh	Word	R/W	Status of LED 11
OCh	Word	R/W	Status of LED 12
0Dh	Word	R/W	Status of LED 13
0Eh	Word	R/W	Status of LED 14
0Fh	Word	R/W	Status of LED 15
10h	Word	R/W	Status of LED 16
11h	Word	R/W	Status of LED 17
12h	Word	R/W	Status of LED 18
13h	Word	R/W	Status of LED 19
14h	Word	R/W	Status of LED 20
19h	Word	R/W	Status of LED 1, 2, 3, 4 & 5
1Ah	Word	R/W	Status of LED 6, 7, 8, 9 & 10
1Bh	Word	R/W	Status of LED 11, 12, 13, 14 & 15
1Ch	Word	R/W	Status of LED 16, 17, 18, 19 & 20
40h	Bit	R/W	Siren Relay
			00h = Deactivated
			FFh = Activated
41h	Bit	R/W	Alarm Relay
			00h = Deactivated
			FFh = Activated
42h	Bit	R/W	LED Test
			FFh = Do LED Test
			Read: Returned value = $00h$
43h	Bit	R/W	Reset
			FFh = Do Reset
		D 711	Read: Returned value = 00h
50h	Word	R/W	Dimming
5.11	D	DAV	01h - FFh(1 - 100%)
51h	Bit	K/W	LED Synchronization
			FFn = Synchronize LEDs
			Read: Returned value = 00n
A 1 h	Word	D/W	Status of VIDIND 1
Alli	Word		Status of VIDIND 2
A211 A3h	Word	D/W/	Status of VIDIND 2
ASII	Word	R/W	Status of VIRINP 5
A411 A5h	Word		Status of VIDIND 5
AJII	Word	K/W D/W/	Status of VIDIND 4
A00	Word	K/W	Status of VIDIND 7
A/n	word	K/W	Status of VIKINP /
Aðh	Word	K/W	Status of VIRINP 8
A9h	Word	K/W	Status of VIKINP 9
AAh	Word	K/W	Status of VIRINP 10
ABh	Word	R/W	Status of VIRINP 11
ACh	Word	R/W	Status of VIRINP 12

I/O Address	Parameter Type	Access Read/Write	Description
ADh	Word	R/W	Status of VIRINP 13
AEh	Word	R/W	Status of VIRINP 14
AFh	Word	R/W	Status of VIRINP 15
B0h	Word	R/W	Status of VIRINP 16
Blh	Word	R/W	Status of VIRINP 17
B2h	Word	R/W	Status of VIRINP 18
B3h	Word	R/W	Status of VIRINP 19
B4h	Word	R/W	Status of VIRINP 20
B9h	Word	R/W	Status of VIRINP 1, 2, 3, 4 & 5
BAh	Word	R/W	Status of VIRINP 6, 7, 8, 9 & 10
BBh	Word	R/W	Status of VIRINP 11, 12, 13, 14 & 15
BCh	Word	R/W	Status of VIRINP 16, 17, 18, 19 & 20

6.5 H1500 Indicator Panel

I/O Address	Parameter Type	Access Read/Write	Description
01h	Word	R/W	Status of LED 1
02h	Word	R/W	Status of LED 2
03h	Word	R/W	Status of LED 3
04h	Word	R/W	Status of LED 4
05h	Word	R/W	Status of LED 5
06h	Word	R/W	Status of LED 6
07h	Word	R/W	Status of LED 7
08h	Word	R/W	Status of LED 8
09h	Word	R/W	Status of LED 9
0Ah	Word	R/W	Status of LED 10
0Bh	Word	R/W	Status of LED 11
0Ch	Word	R/W	Status of LED 12
0Dh	Word	R/W	Status of LED 13
0Eh	Word	R/W	Status of LED 14
0Fh	Word	R/W	Status of LED 15
10h	Word	R/W	Status of LED 16
11h	Word	R/W	Status of LED 17
12h	Word	R/W	Status of LED 18
19h	Word	R/W	Status of LED 1, 2, 3, 4 & 5
1Ah	Word	R/W	Status of LED 6, 7, 8, 9 & 10
1Bh	Word	R/W	Status of LED 11, 12, 13, 14 & 15
1Ch	Word	R/W	Status of LED 16, 17, 18
42h	Bit	W	LED Test
			FFh = Do LED Test
			Read: Returned value = 00h
50h	Word	W	Dimming
			01h – FFh (1 – 100%)
51h	Bit	W	LED Synchronization
			FFh = Synchronize LEDs
			Read: Returned value = $00h$

6.6 H3000 Analog Alarm Annunciator

I/O Address	Parameter Type	Access Read/Write	Description
01h	Word	R	Status of Alarm 1
01h	Word	R	Status of Alarm 2
02h	Word	R	Status of Alarm 3
04h	Word	R	Status of Alarm 4
05h	Word	R	Status of Alarm 5
05h	Word	R	Status of Alarm 6
07h	Word	R	Status of Alarm 7
08h	Word	R	Status of Alarm 8
00h	Word	R	Status of Alarm 9
0Ah	Word	R	Status of Alarm 10
0Bh	Word	R	Status of Alarm 11
0Ch	Word	R	Status of Alarm 12
0Dh	Word	R	Status of Alarm 12
0Eh	Word	R	Status of Alarm 14
0Fh	Word	R	Status of Alarm 15
10h	Word	R	Status of Alarm 16
11h	Word	R	Status of Alarm 17
12h	Word	R	Status of Alarm 18
13h	Word	R	Status of Alarm 19
14h	Word	R	Status of Alarm 20
15h	Word	R	Status of Alarm 21
16h	Word	R	Status of Alarm 22
17h	Word	R	Status of Alarm 23
18h	Word	R	Status of Alarm 24
19h	Word	R	Status of Alarm 25
1Ah	Word	R	Status of Alarm 26
1Bh	Word	R	Status of Alarm 27
1Ch	Word	R	Status of Alarm 28
1Dh	Word	R	Status of Alarm 29
1Eh	Word	R	Status of Alarm 30
1Fh	Word	R	Status of Alarm 31
20h	Word	R	Status of Alarm 32
21h	Word	R	Status of Alarm 1, 2, 3, 4 & 5
22h	Word	R	Status of Alarm 6, 7, 8, 9 & 10
23h	Word	R	Status of Alarm 11, 12, 13, 14 & 15
24h	Word	R	Status of Alarm 16, 17, 18, 19 & 20
25h	Word	R	Status of Alarm 21, 22, 23, 24 & 25
26h	Word	R	Status of Alarm 26, 27, 28, 29 & 30
27h	Word	R	Status of Alarm 31 & 32
40h	Bit	R	Siren Relay
			00h = Deactivated
401	D'(DAV	FFh = Activated
42n	Bit	K/W	LED Test EEh – Do LED Tost
			FFn = D0 LED Test Read: Returned value = 00h
13h	Bit	D/W	Read. Returned value – 0011
+311	DI	1/ 1/	FFh - Do Reset
			Read: Returned value = $00h$
50h	Word	R/W	Dimming
2011	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		01h - FFh (1 - 100%)

I/O Address	Parameter Type	Access Read/Write	Description
D0h	Word	R	Analog Value IN1
D1h	Word	R	Analog Value IN2
D2h	Word	R	Analog Value IN3
D3h	Word	R	Analog Value IN4
D4h	Word	R	Analog Value IN5
D5h	Word	R	Analog Value IN6
D6h	Word	R	Analog Value IN7
D7h	Word	R	Analog Value IN8
D8h	Word	R	Analog Value IN9
D9h	Word	R	Analog Value IN10
DAh	Word	R	Analog Value IN11
DBh	Word	R	Analog Value IN12
DCh	Word	R	Analog Value IN13
DDh	Word	R	Analog Value IN14
DEh	Word	R	Analog Value IN15
DFh	Word	R	Analog Value IN16

6.7 H3010 Smoke Alarm Annunciator

I/O	Parameter	Access	Description
Address	Туре	Read/Write	
01h	Word	R	Status of Alarm 1
02h	Word	R	Status of Alarm 2
02h 03h	Word	R	Status of Alarm 3
03h 04h	Word	R	Status of Alarm 4
05h	Word	R	Status of Alarm 5
06h	Word	R	Status of Alarm 6
07h	Word	R	Status of Alarm 7
08h	Word	R	Status of Alarm 8
09h	Word	R	Status of Alarm 9
0Ah	Word	R	Status of Alarm 10
0Bh	Word	R	Status of Alarm 11
0Ch	Word	R	Status of Alarm 12
0Dh	Word	R	Status of Alarm 13
0Eh	Word	R	Status of Alarm 14
0Fh	Word	R	Status of Alarm 15
10h	Word	R	Status of Alarm 16
11h	Word	R	Main Power Supply (Off-On-Fail)
12h	Word	R	Emerg Power Supply (Off-On-Fail)
13h	Word	R	Fan 1 (Off-On-Fail)
14h	Word	R	Fan 2 (Off-On-Fail)
19h	Word	R	Status of Alarms 1, 2, 3, 4 & 5
1Ah	Word	R	Status of Alarms 6, 7, 8, 9 & 10
1Bh	Word	R	Status of Alarms 11, 12, 13, 14 & 15
1Ch	Word	R	Status of Alarms 16, 17, 18, 19 & 20
40h	Bit	R	Siren Relay
			00h = Deactivated
			FFh = Activated
42h	Bit	R/W	LED Test
			FFh = Do LED Test
43h	Bit	R/W	Reset
501	XX7 1	DAV	FFn = Do Reset
50h	Word	R/W	Dimming
			010 - FFn(1 - 100%)
A 1h	Word	D	Status of Output 1
A2h	Word	R	Status of Output 1 Status of Output 2
A2II A3b	Word	D	Status of Output 2
AJII A/h	Word	R	Status of Output 5
Δ5h	Word	R	Status of Output 4
A6h	Word	R	Status of Output 5
Δ7h	Word	R	Status of Output 7
A8h	Word	R	Status of Output 7
71011	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		
B9h	Word	R	Status of Outputs 1 2 3 4 & 5
BAb	Word	R	Status of Outputs 6, 7, & 8